Newer
Older
/// \brief This file takes care of handling command-line parameters and loading
/// the appropriate flavour of libtinycode-*.so
//
// This file is distributed under the MIT License. See LICENSE.md for details.
//

Alessandro Di Federico
committed
#include <fstream>
#include <iostream>
#include <sstream>
#include "llvm/Object/Binary.h"
#include "llvm/Object/ELF.h"
#include "binaryfile.h"
#include "codegenerator.h"
#include "debug.h"
#include "ptcinterface.h"
#include "revamb.h"
PTCInterface ptc = {}; ///< The interface with the PTC library.
static std::string LibTinycodePath;
static std::string LibHelpersPath;
struct ProgramParameters {
const char *InputPath;
const char *OutputPath;
size_t EntryPointAddress;
const char *LinkingInfoPath;
const char *BBSummaryPath;
bool DetectFunctionsBoundaries;
};
using LibraryDestructor = GenericFunctor<decltype(&dlclose), &dlclose>;
using LibraryPointer = std::unique_ptr<void, LibraryDestructor>;
static const char *const Usage[] = {
"revamb [options] [--] INFILE OUTFILE",
static void findQemu(const char *Architecture) {
// TODO: make this optional
char *FullPath = realpath("/proc/self/exe", nullptr);
assert(FullPath != nullptr);
std::string Directory(dirname(FullPath));
free(FullPath);
// TODO: add other search paths?
std::vector<std::string> SearchPaths;
#ifdef QEMU_INSTALL_PATH
SearchPaths.push_back(std::string(QEMU_INSTALL_PATH) + "/lib");
#endif
#ifdef INSTALL_PATH
SearchPaths.push_back(std::string(INSTALL_PATH) + "/lib");
#endif
SearchPaths.push_back(Directory + "/../lib");
for (auto &Path : SearchPaths) {
std::stringstream LibraryPath;
LibraryPath << Path << "/libtinycode-" << Architecture << ".so";
std::stringstream HelpersPath;
HelpersPath << Path << "/libtinycode-helpers-" << Architecture << ".ll";
if (access(LibraryPath.str().c_str(), F_OK) != -1
&& access(HelpersPath.str().c_str(), F_OK) != -1) {
LibTinycodePath = LibraryPath.str();
LibHelpersPath = HelpersPath.str();
return;
}
}
assert(false && "Couldn't find libtinycode and the helpers");
}
/// Given an architecture name, loads the appropriate version of the PTC library,
/// and initializes the PTC interface.
///
/// \param Architecture the name of the architecture, e.g. "arm".
/// \param PTCLibrary a reference to the library handler.
/// \return EXIT_SUCCESS if the library has been successfully loaded.
static int loadPTCLibrary(LibraryPointer& PTCLibrary) {
ptc_load_ptr_t ptc_load = nullptr;
void *LibraryHandle = nullptr;
// Look for the library in the system's paths
LibraryHandle = dlopen(LibTinycodePath.c_str(), RTLD_LAZY);
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
if (LibraryHandle == nullptr) {
fprintf(stderr, "Couldn't load the PTC library: %s\n", dlerror());
return EXIT_FAILURE;
}
// The library has been loaded, initialize the pointer, the caller will take
// care of dlclose it from now on
PTCLibrary.reset(LibraryHandle);
// Obtain the address of the ptc_load entry point
ptc_load = (ptc_load_ptr_t) dlsym(LibraryHandle, "ptc_load");
if (ptc_load == nullptr) {
fprintf(stderr, "Couldn't find ptc_load: %s\n", dlerror());
return EXIT_FAILURE;
}
// Initialize the ptc interface
if (ptc_load(LibraryHandle, &ptc) != 0) {
fprintf(stderr, "Couldn't find PTC functions.\n");
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
/// Parses the input arguments to the program.
///
/// \param Argc number of arguments.
/// \param Argv array of strings containing the arguments.
/// \param Parameters where to store the parsed parameters.
/// \return EXIT_SUCCESS if the parameters have been successfully parsed.
static int parseArgs(int Argc, const char *Argv[],
ProgramParameters *Parameters) {
const char *DebugString = nullptr;
const char *DebugLoggingString = nullptr;
const char *EntryPointAddressString = nullptr;
long long EntryPointAddress = 0;
// Initialize argument parser
struct argparse Arguments;
struct argparse_option Options[] = {
OPT_HELP(),
OPT_GROUP("Input description"),
OPT_STRING('e', "entry",
&EntryPointAddressString,
"virtual address of the entry point where to start."),
&Parameters->DebugPath,
"destination path for the generated debug source."),
OPT_STRING('c', "coverage-path",
&Parameters->CoveragePath,
"destination path for the CSV containing translated ranges."),
OPT_STRING('i', "linking-info",
&Parameters->LinkingInfoPath,
"destination path for the CSV containing linking info."),
&DebugString,
"emit debug information. Possible values are 'none' for no debug"
" information, 'asm' for debug information referring to the"
" assembly of the input file, 'ptc' for debug information"
" referred to the Portable Tiny Code, or 'll' for debug"
" information referred to the LLVM IR."),
OPT_STRING('d', "debug",
&DebugLoggingString,
"enable verbose logging."),
OPT_BOOLEAN('O', "no-osra", &Parameters->NoOSRA,
"disable OSRA."),
OPT_BOOLEAN('L', "no-link", &Parameters->NoLink,
"do not link the output to QEMU helpers."),
OPT_BOOLEAN('E', "external", &Parameters->External,
"set CSVs linkage to external, useful for debugging purposes."),
OPT_BOOLEAN('S', "use-sections", &Parameters->UseSections,
"use section informations, if available."),
OPT_STRING('b', "bb-summary",
&Parameters->BBSummaryPath,
"destination path for the CSV containing the statistics about "
"the translated basic blocks."),
OPT_BOOLEAN('f', "functions-boundaries",
&Parameters->DetectFunctionsBoundaries,
"enable functions boundaries detection."),
OPT_END(),
};
argparse_init(&Arguments, Options, Usage, 0);
argparse_describe(&Arguments, "\nrevamb.",
"\nTranslates a binary into a program for a different "
"architecture.\n");
Argc = argparse_parse(&Arguments, Argc, Argv);
// Handle positional arguments
if (Argc != 2) {
fprintf(stderr, "Too many arguments.\n");
return EXIT_FAILURE;
}
Parameters->InputPath = Argv[0];
Parameters->OutputPath = Argv[1];
if (EntryPointAddressString != nullptr) {
if (sscanf(EntryPointAddressString, "%lld", &EntryPointAddress) != 1) {
fprintf(stderr, "Entry point parameter (-e, --entry) is not a"
" number.\n");
return EXIT_FAILURE;
}
Parameters->EntryPointAddress = (size_t) EntryPointAddress;
}
if (DebugString != nullptr) {
if (strcmp("none", DebugString) == 0) {
Parameters->DebugInfo = DebugInfoType::None;
} else if (strcmp("asm", DebugString) == 0) {
Parameters->DebugInfo = DebugInfoType::OriginalAssembly;
} else if (strcmp("ptc", DebugString) == 0) {
Parameters->DebugInfo = DebugInfoType::PTC;
} else if (strcmp("ll", DebugString) == 0) {
Parameters->DebugInfo = DebugInfoType::LLVMIR;
fprintf(stderr, "Unexpected value for the debug type parameter"
" (-g, --debug).\n");
return EXIT_FAILURE;
}
}
if (DebugLoggingString != nullptr) {
DebuggingEnabled = true;
std::string Input(DebugLoggingString);
std::stringstream Stream(Input);
std::string Type;
while (std::getline(Stream, Type, ','))
enableDebugFeature(Type.c_str());
}
if (Parameters->DebugPath == nullptr)
Parameters->DebugPath = "";
if (Parameters->LinkingInfoPath == nullptr)
Parameters->LinkingInfoPath = "";
if (Parameters->CoveragePath == nullptr)
Parameters->CoveragePath = "";
if (Parameters->BBSummaryPath == nullptr)
Parameters->BBSummaryPath = "";
return EXIT_SUCCESS;
}
int main(int argc, const char *argv[]) {
// Parse arguments
ProgramParameters Parameters {};
if (parseArgs(argc, argv, &Parameters) != EXIT_SUCCESS)
return EXIT_FAILURE;
BinaryFile TheBinary(Parameters.InputPath, Parameters.UseSections);
findQemu(TheBinary.architecture().name());
// Load the appropriate libtyncode version
LibraryPointer PTCLibrary;
if (loadPTCLibrary(PTCLibrary) != EXIT_SUCCESS)
return EXIT_FAILURE;
// Translate everything
Architecture TargetArchitecture;
CodeGenerator Generator(TheBinary,
std::string(Parameters.OutputPath),
std::string(Parameters.DebugPath),
std::string(Parameters.CoveragePath),
std::string(Parameters.BBSummaryPath),
Parameters.DetectFunctionsBoundaries,
!Parameters.NoLink,
Parameters.External);
Generator.translate(Parameters.EntryPointAddress);