Skip to content
Snippets Groups Projects
user avatar
Peter Maydell authored
Block layer patches:

- Relax restrictions for blockdev-snapshot (allows libvirt to do live
  storage migration with blockdev-mirror)
- luks: Delete created files when block_crypto_co_create_opts_luks fails
- Fix memleaks in qmp_object_add

# gpg: Signature made Wed 11 Mar 2020 15:38:59 GMT
# gpg:                using RSA key 7F09B272C88F2FD6
# gpg: Good signature from "Kevin Wolf <kwolf@redhat.com>" [full]
# Primary key fingerprint: DC3D EB15 9A9A F95D 3D74  56FE 7F09 B272 C88F 2FD6

* remotes/kevin/tags/for-upstream:
  qemu-iotests: adding LUKS cleanup for non-UTF8 secret error
  crypto.c: cleanup created file when block_crypto_co_create_opts_luks fails
  block.c: adding bdrv_co_delete_file
  block: introducing 'bdrv_co_delete_file' interface
  tests/qemu-iotests: Fix socket_scm_helper build path
  qapi: Add '@allow-write-only-overlay' feature for 'blockdev-snapshot'
  iotests: Add iothread cases to 155
  block: Fix cross-AioContext blockdev-snapshot
  iotests: Test mirror with temporarily disabled target backing file
  iotests: Fix run_job() with use_log=False
  block: Relax restrictions for blockdev-snapshot
  block: Make bdrv_get_cumulative_perm() public
  qom-qmp-cmds: fix two memleaks in qmp_object_add

Signed-off-by: default avatarPeter Maydell <peter.maydell@linaro.org>
49780a58
History

QEMU README

QEMU is a generic and open source machine & userspace emulator and virtualizer.

QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board).

QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation.

QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager.

QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file.

Building

QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are:

mkdir build
cd build
../configure
make

Additional information can also be found online via the QEMU website:

Submitting patches

The QEMU source code is maintained under the GIT version control system.

git clone https://git.qemu.org/git/qemu.git

When submitting patches, one common approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the CODING_STYLE.rst file.

Additional information on submitting patches can be found online via the QEMU website

The QEMU website is also maintained under source control.

git clone https://git.qemu.org/git/qemu-web.git

A 'git-publish' utility was created to make above process less cumbersome, and is highly recommended for making regular contributions, or even just for sending consecutive patch series revisions. It also requires a working 'git send-email' setup, and by default doesn't automate everything, so you may want to go through the above steps manually for once.

For installation instructions, please go to

The workflow with 'git-publish' is:

$ git checkout master -b my-feature
$ # work on new commits, add your 'Signed-off-by' lines to each
$ git publish

Your patch series will be sent and tagged as my-feature-v1 if you need to refer back to it in the future.

Sending v2:

$ git checkout my-feature # same topic branch
$ # making changes to the commits (using 'git rebase', for example)
$ git publish

Your patch series will be sent with 'v2' tag in the subject and the git tip will be tagged as my-feature-v2.

Bug reporting

The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs found when running code built from QEMU git or upstream released sources should be reported via:

If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via launchpad.

For additional information on bug reporting consult:

Contact

The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC

Information on additional methods of contacting the community can be found online via the QEMU website: